Reblog from one of my favourite blogs. 
http://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html
The AI Revolution: The Road to Superintelligence by Tim Urban

Imagine taking a time machine back to 1750—a time when the world was in a permanent power outage, long-distance communication meant either yelling loudly or firing a cannon in the air, and all transportation ran on hay. When you get there, you retrieve a dude, bring him to 2015, and then walk him around and watch him react to everything. It’s impossible for us to understand what it would be like for him to see shiny capsules racing by on a highway, talk to people who had been on the other side of the ocean earlier in the day, watch sports that were being played 1,000 miles away, hear a musical performance that happened 50 years ago, and play with my magical wizard rectangle that he could use to capture a real-life image or record a living moment, generate a map with a paranormal moving blue dot that shows him where he is, look at someone’s face and chat with them even though they’re on the other side of the country, and worlds of other inconceivable sorcery. This is all before you show him the internet or explain things like the International Space Station, the Large Hadron Collider, nuclear weapons, or general relativity.
This experience for him wouldn’t be surprising or shocking or even mind-blowing—those words aren’t big enough. He might actually die.
But here’s the interesting thing—if he then went back to 1750 and got jealous that we got to see his reaction and decided he wanted to try the same thing, he’d take the time machine and go back the same distance, get someone from around the year 1500, bring him to 1750, and show him everything. And the 1500 guy would be shocked by a lot of things—but he wouldn’t die. It would be far less of an insane experience for him, because while 1500 and 1750 were very different, they were much less different than 1750 to 2015. The 1500 guy would learn some mind-bending shit about space and physics, he’d be impressed with how committed Europe turned out to be with that new imperialism fad, and he’d have to do some major revisions of his world map conception. But watching everyday life go by in 1750—transportation, communication, etc.—definitely wouldn’t make him die.
No, in order for the 1750 guy to have as much fun as we had with him, he’d have to go much farther back—maybe all the way back to about 12,000 BC, before the First Agricultural Revolution gave rise to the first cities and to the concept of civilization.

This pattern—human progress moving quicker and quicker as time goes on—is what futurist Ray Kurzweil calls human history’s Law of Accelerating Returns. This happens because more advanced societies have the ability to progress at a faster rate than less advanced societies—because they’re more advanced.
The average rate of advancement between 1985 and 2015 was higher than the rate between 1955 and 1985—because the former was a more advanced world—so much more change happened in the most recent 30 years than in the prior 30.
So—advances are getting bigger and bigger and happening more and more quickly. This suggests some pretty intense things about our future, right?
Kurzweil suggests that the progress of the entire 20th century would have been achieved in only 20 years at the rate of advancement in the year 2000—in other words, by 2000, the rate of progress was five times faster than the average rate of progress during the 20th century. He believes another 20th century’s worth of progress happened between 2000 and 2014 and that another 20th century’s worth of progress will happen by 2021, in only seven years. A couple decades later, he believes a 20th century’s worth of progress will happen multiple times in the same year, and even later, in less than one month. All in all, because of the Law of Accelerating Returns, Kurzweil believes that the 21st century will achieve 1,000 times the progress of the 20th century.

If Kurzweil and others who agree with him are correct, then we may be as blown away by 2030 as our 1750 guy was by 2015—i.e. the next DPU might only take a couple decades—and the world in 2050 might be so vastly different than today’s world that we would barely recognize it.
This isn’t science fiction. It’s what many scientists smarter and more knowledgeable than you or I firmly believe—and if you look at history, it’s what we should logically predict.
What Is AI?
If you’re like me, you used to think Artificial Intelligence was a silly sci-fi concept, but lately you’ve been hearing it mentioned by serious people, and you don’t really quite get it.
There are three reasons a lot of people are confused about the term AI:
1) We associate AI with movies. Star Wars. Terminator. 2001: A Space Odyssey. Even the Jetsons. And those are fiction, as are the robot characters. So it makes AI sound a little fictional to us.
2) AI is a broad topic. It ranges from your phone’s calculator to self-driving cars to something in the future that might change the world dramatically. AI refers to all of these things, which is confusing.
3) We use AI all the time in our daily lives, but we often don’t realize it’s AI.
For example, the software and data behind Siri is AI, the woman’s voice we hear is a personification of that AI, and there’s no robot involved at all. So let’s clear things up. First, stop thinking of robots. A robot is a container for AI, sometimes mimicking the human form, sometimes not—but the AI itself is the computer inside the robot. AI is the brain, and the robot is its body—if it even has a body.
Here are three major AI categories:
Artificial Narrow Intelligence (ANI)
Artificial General Intelligence (AGI)
Artificial Superintelligence (ASI)
Where We Are Currently—A World Running on ANI

Artificial Narrow Intelligence is machine intelligence that equals or exceeds human intelligence or efficiency at a specific thing. A few examples: cars are full of ANI systems, your phone is a little ANI factory. When you navigate using your map app, receive tailored music recommendations from Pandora, check tomorrow’s weather, talk to Siri, or dozens of other everyday activities, you’re using ANI.

Your email spam filter is a classic type of ANI—it starts off loaded with intelligence about how to figure out what’s spam and what’s not, and then it learns and tailors its intelligence to you as it gets experience with your particular preferences.
You know the whole creepy thing that goes on when you search for a product on Amazon and then you see that as a “recommended for you” product on a different site? That’s a network of ANI systems, working together to inform each other about who you are and what you like and then using that information to decide what to show you. People who bought this also bought… thing—that’s an ANI system whose job it is to gather info from the behavior of millions of customers and synthesize that info to cleverly upsell you so you’ll buy more things.
When your plane lands, it’s not a human that decides which gate it should go to. Just like it’s not a human that determined the price of your ticket. Google search is one large ANI brain with incredibly sophisticated methods for ranking pages and figuring out what to show you in particular.
And those are just in the consumer world. Sophisticated ANI systems are widely used in sectors and industries like military, manufacturing, and finance (algorithmic high-frequency AI traders account for more than half of equity shares traded on US markets6), and in expert systems like those that help doctors make diagnoses…

The Road From ANI to AGI
Why It’s So Hard
Nothing will make you appreciate human intelligence like learning about how unbelievably challenging it is to try to create a computer as smart as we are. Building skyscrapers, putting humans in space, figuring out the details of how the Big Bang went down—all far easier than understanding our own brain or how to make something as cool as it. As of now, the human brain is the most complex object in the known universe.
Hard things—like calculus, financial market strategy, and language translation—are mind-numbingly easy for a computer, while easy things—like vision, motion, movement, and perception—are insanely hard for it. Or, as computer scientist Donald Knuth puts it, “AI has by now succeeded in doing essentially everything that requires ‘thinking’ but has failed to do most of what people and animals do ‘without thinking.
One fun example—when you look at this, you and a computer both can figure out that it’s a rectangle with two distinct shades, alternating:

And looking at the picture below, a computer sees a two-dimensional white, black, and gray collage, while you easily see what it really is—a photo of an entirely-black, 3-D rock:

Amazing subject, right?
Read more here: http://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html
I also highly recommend following blog posts:
http://waitbutwhy.com/2013/10/why-procrastinators-procrastinate.html
http://waitbutwhy.com/2014/06/taming-mammoth-let-peoples-opinions-run-life.html
http://waitbutwhy.com/2014/12/10-types-odd-friendships-youre-probably-part.html
http://waitbutwhy.com/2014/04/everything-dont-know-tipping.html
Like this:
Like Loading...